Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 12(1): 2659, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1900621

ABSTRACT

The COVID-19 pandemic represents an unprecedented global crisis necessitating novel approaches for, amongst others, early detection of emerging variants relating to the evolution and spread of the virus. Recently, the detection of SARS-CoV-2 RNA in wastewater has emerged as a useful tool to monitor the prevalence of the virus in the community. Here, we propose a novel methodology, called lineagespot, for the monitoring of mutations and the detection of SARS-CoV-2 lineages in wastewater samples using next-generation sequencing (NGS). Our proposed method was tested and evaluated using NGS data produced by the sequencing of 14 wastewater samples from the municipality of Thessaloniki, Greece, covering a 6-month period. The results showed the presence of SARS-CoV-2 variants in wastewater data. lineagespot was able to record the evolution and rapid domination of the Alpha variant (B.1.1.7) in the community, and allowed the correlation between the mutations evident through our approach and the mutations observed in patients from the same area and time periods. lineagespot is an open-source tool, implemented in R, and is freely available on GitHub and registered on bio.tools.


Subject(s)
Mutation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Software , Wastewater/virology , Humans
2.
Front Genet ; 12: 618170, 2021.
Article in English | MEDLINE | ID: covidwho-1389158

ABSTRACT

The exponential growth of genome sequences available has spurred research on pattern detection with the aim of extracting evolutionary signal. Traditional approaches, such as multiple sequence alignment, rely on positional homology in order to reconstruct the phylogenetic history of taxa. Yet, mining information from the plethora of biological data and delineating species on a genetic basis, still proves to be an extremely difficult problem to consider. Multiple algorithms and techniques have been developed in order to approach the problem multidimensionally. Here, we propose a computational framework for identifying potentially meaningful features based on k-mers retrieved from unaligned sequence data. Specifically, we have developed a process which makes use of unsupervised learning techniques in order to identify characteristic k-mers of the input dataset across a range of different k-values and within a reasonable time frame. We use these k-mers as features for clustering the input sequences and identifying differences between the distributions of k-mers across the dataset. The developed algorithm is part of an innovative and much promising approach both to the problem of grouping sequence data based on their inherent characteristic features, as well as for the study of changes in the distributions of k-mers, as the k-value is fluctuating within a range of values. Our framework is fully developed in Python language as an open source software licensed under the MIT License, and is freely available at https://github.com/BiodataAnalysisGroup/kmerAnalyzer.

SELECTION OF CITATIONS
SEARCH DETAIL